Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 242024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38242845

RESUMO

Enzymes of the ureohydrolase superfamily are specific in recognizing their substrates. While looking to broaden the substrate specificity of 4-guanidinobutyrase (GBase), we isolated a yeast, typed as Candida parapsilosis (NCIM 3689), that efficiently utilized both 4-guanidinobutyrate (GB) and 3-guanidinopropionate (GP) as a sole source of nitrogen. A putative GBase sequence was identified from its genome upon pBLAST query using the GBase sequence from Aspergillus niger (AnGBase). The C. parapsilosis GBase (CpGBase) ORF was PCR amplified, cloned, and sequenced. Further, the functional CpGBase protein expressed in Saccharomyces cerevisiae functioned as GBase and 3-guanidinopropionase (GPase). S. cerevisiae cannot grow on GB or GP. However, the transformants expressing CpGBase acquired the ability to utilize and grow on both GB and GP. The expressed CpGBase protein was enriched and analyzed for substrate saturation and product inhibition by γ-aminobutyric acid and ß-alanine. In contrast to the well-characterized AnGBase, CpGBase from C. parapsilosis is a novel ureohydrolase and showed hyperbolic saturation for GB and GP with comparable efficiency (Vmax/KM values of 3.4 and 2.0, respectively). With the paucity of structural information and limited active site data available on ureohydrolases, CpGBase offers an excellent paradigm to explore this class of enzymes.


Assuntos
Candida parapsilosis , Saccharomyces cerevisiae , Candida parapsilosis/genética , Saccharomyces cerevisiae/genética , Ureo-Hidrolases/química , Ureo-Hidrolases/genética , Ureo-Hidrolases/metabolismo
2.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946272

RESUMO

Agmatine is the product of the decarboxylation of L-arginine by the enzyme arginine decarboxylase. This amine has been attributed to neurotransmitter functions, anticonvulsant, anti-neurotoxic, and antidepressant in mammals and is a potential therapeutic agent for diseases such as Alzheimer's, Parkinson's, and cancer. Agmatinase enzyme hydrolyze agmatine into urea and putrescine, which belong to one of the pathways producing polyamines, essential for cell proliferation. Agmatinase from Escherichia coli (EcAGM) has been widely studied and kinetically characterized, described as highly specific for agmatine. In this study, we analyze the amino acids involved in the high specificity of EcAGM, performing a series of mutations in two loops critical to the active-site entrance. Two structures in different space groups were solved by X-ray crystallography, one at low resolution (3.2 Å), including a guanidine group; and other at high resolution (1.8 Å) which presents urea and agmatine in the active site. These structures made it possible to understand the interface interactions between subunits that allow the hexameric state and postulate a catalytic mechanism according to the Mn2+ and urea/guanidine binding site. Molecular dynamics simulations evaluated the conformational dynamics of EcAGM and residues participating in non-binding interactions. Simulations showed the high dynamics of loops of the active site entrance and evidenced the relevance of Trp68, located in the adjacent subunit, to stabilize the amino group of agmatine by cation-pi interaction. These results allow to have a structural view of the best-kinetic characterized agmatinase in literature up to now.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Ureo-Hidrolases/química , Agmatina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato , Ureo-Hidrolases/metabolismo
3.
PLoS One ; 16(4): e0248991, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857156

RESUMO

Agmatine amidinohydrolase, or agmatinase, catalyzes the conversion of agmatine to putrescine and urea. This enzyme is found broadly across kingdoms of life and plays a critical role in polyamine biosynthesis and the regulation of agmatine concentrations. Here we describe the high-resolution X-ray crystal structure of the E. coli agmatinase, SPEB. The data showed a relatively high degree of pseudomerohedral twinning, was ultimately indexed in the P31 space group and led to a final model with eighteen chains, corresponding to three full hexamers in the asymmetric unit. There was a solvent content of 38.5% and refined R/Rfree values of 0.166/0.216. The protein has the conserved fold characteristic of the agmatine ureohydrolase family and displayed a high degree of structural similarity among individual protomers. Two distinct peaks of electron density were observed in the active site of most of the eighteen chains of SPEB. As the activity of this protein is known to be dependent upon manganese and the fold is similar to other dinuclear metallohydrolases, these peaks were modeled as manganese ions. The orientation of the conserved active site residues, in particular those amino acids that participate in binding the metal ions and a pair of acidic residues (D153 and E274 in SPEB) that play a role in catalysis, are similar to other agmatinase and arginase enzymes and is consistent with a hydrolytic mechanism that proceeds via a metal-activated hydroxide ion.


Assuntos
Proteínas de Escherichia coli/química , Ureo-Hidrolases/química , Domínio Catalítico , Sequência Conservada , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Ureo-Hidrolases/metabolismo
4.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531922

RESUMO

Agmatine is a neurotransmitter with anticonvulsant, anti-neurotoxic and antidepressant-like effects, in addition it has hypoglycemic actions. Agmatine is converted to putrescine and urea by agmatinase (AGM) and by an agmatinase-like protein (ALP), a new type of enzyme which is present in human and rodent brain tissues. Recombinant rat brain ALP is the only mammalian protein that exhibits significant agmatinase activity in vitro and generates putrescine under in vivo conditions. ALP, despite differing in amino acid sequence from all members of the ureohydrolase family, is strictly dependent on Mn2+ for catalytic activity. However, the Mn2+ ligands have not yet been identified due to the lack of structural information coupled with the low sequence identity that ALPs display with known ureohydrolases. In this work, we generated a structural model of the Mn2+ binding site of the ALP and we propose new putative Mn2+ ligands. Then, we cloned and expressed a sequence of 210 amino acids, here called the "central-ALP", which include the putative ligands of Mn2+. The results suggest that the central-ALP is catalytically active, as agmatinase, with an unaltered Km for agmatine and a decreased kcat. Similar to wild-type ALP, central-ALP is activated by Mn2+ with a similar affinity. Besides, a simple mutant D217A, a double mutant E288A/K290A, and a triple mutant N213A/Q215A/D217A of these putative Mn2+ ligands result on the loss of ALP agmatinase activity. Our results indicate that the central-ALP contains the active site for agmatine hydrolysis, as well as that the residues identified are relevant for the ALP catalysis.


Assuntos
Agmatina/metabolismo , Manganês/metabolismo , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo , Animais , Sítios de Ligação , Escherichia coli/genética , Cinética , Mamíferos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Temperatura , Ureo-Hidrolases/genética
5.
Anal Biochem ; 595: 113618, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32057730

RESUMO

Ureohydrolases are members of the metallohydrolase family of enzymes. Here, a simple continuous assay for agmatinase (AGM) activity was established by following the degradation of agmatine to urea and putrescine using isothermal titration calorimetry (ITC). ITC is particularly useful for kinetic assays when substrates of interest do not possess suitable chromophores that facilitate the continuous spectrophotometric detection of substrate depletion and/or product formation. In order to assess the accuracy of the ITC-based assay, catalytic parameters were also determined using a discontinuous, colorimetric assay. Both methods resulted in comparable kinetic parameters. From the colorimetric assay the kcat and KM values are 131 s-1 and 0.25 mM, respectively, and from the ITC assay the corresponding parameters are 30 s-1 and 0.45 mM, respectively. The continuous ITC-based assay will facilitate functional studies for an enzyme that is an emerging target for the development of addiction treatments.


Assuntos
Biocatálise , Calorimetria , Ureo-Hidrolases/metabolismo , Escherichia coli/enzimologia , Hidrólise , Cinética , Modelos Moleculares , Ureo-Hidrolases/química , Ureo-Hidrolases/isolamento & purificação
6.
J Inorg Biochem ; 202: 110812, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31731096

RESUMO

Ureohydrolases form a conserved family of enzymes with a strict requirement for divalent metal ions for catalytic activity. They catalyze the hydrolysis of the guanidino group and produce urea. In their active sites six highly conserved amino acid residues form a binding pocket for two catalytically essential metal ions that are needed to activate a water molecule to initiate the hydrolysis of the guanidino group in a nucleophilic attack. Focus in this review is on two members of the ureohydrolase family, the Mn2+-dependent arginase and agmatinase, which play important roles in functions related to replication and cell survival. We will focus in particular on Mn2+ binding interactions, and on how this metal ion contributes to the reaction catalyzed by these enzymes. We also include the agmatinase-like protein (ALP) because it is functionally closely related to agmatinase, also requires at least one Mn2+ ion for catalytic activity, but may possess an active site that differs significantly from all other known ureohydrolases.


Assuntos
Arginase , Manganês , Ureo-Hidrolases , Arginase/química , Arginase/metabolismo , Catálise , Manganês/química , Manganês/metabolismo , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo
7.
Int J Mol Sci ; 20(15)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357701

RESUMO

The thermophilic fungus Humicola insolens produces cellulolytic enzymes that are of great scientific and commercial interest; however, few reports have focused on its cellulase expression regulation mechanism. In this study, we constructed a creA gene (carbon catabolite repressor gene) disruption mutant strain of H. insolens that exhibited a reduced radial growth rate and stouter hyphae compared to the wild-type (WT) strain. The creA disruption mutant also expressed elevated pNPCase (cellobiohydrolase activities), pNPGase (ß-glucosidase activities), and xylanase levels in non-inducing fermentation with glucose. Unlike other fungi, the H. insolens creA disruption mutant displayed lower FPase (filter paper activity), CMCase (carboxymethyl cellulose activity), pNPCase, and pNPGase activity than observed in the WT strain when fermentation was induced using Avicel, whereas its xylanase activity was higher than that of the parental strain. These results indicate that CreA acts as a crucial regulator of hyphal growth and is part of a unique cellulase expression regulation mechanism in H. insolens. These findings provide a new perspective to improve the understanding of carbon catabolite repression regulation mechanisms in cellulase expression, and enrich the knowledge of metabolism diversity and molecular regulation of carbon metabolism in thermophilic fungi.


Assuntos
Carbono/metabolismo , Repressão Catabólica/genética , Sordariales/enzimologia , Ureo-Hidrolases/genética , Carbono/química , Carboximetilcelulose Sódica/metabolismo , Celulase/química , Celulase/genética , Celulase/metabolismo , Celulose/farmacologia , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Fermentação , Regulação Fúngica da Expressão Gênica/genética , Glucose/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutação/genética , Sordariales/metabolismo , Ureo-Hidrolases/química , beta-Glucosidase/química , beta-Glucosidase/metabolismo
8.
Microbiology (Reading) ; 165(4): 396-410, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30806615

RESUMO

Arginase is the only fungal ureohydrolase that is well documented in the literature. More recently, a novel route for agmatine catabolism in Aspergillus niger involving another ureohydrolase, 4-guanidinobutyrase (GBase), was reported. We present here a detailed characterization of A. niger GBase - the first fungal (and eukaryotic) enzyme to be studied in detail. A. niger GBase is a homohexamer with a native molecular weight of 336 kDa and an optimal pH of 7.5. Unlike arginase, the Mn2+ enzyme from the same fungus, purified GBase protein is associated with Zn2+ ions. A sensitive fluorescence assay was used to determine its kinetic parameters. GBase acted 25 times more efficiently on 4-guanidinobutyrate (GB) than 3-guanidinopropionic acid (GP). The Km for GB was 2.7±0.4 mM, whereas for GP it was 53.7±0.8 mM. While GB was an efficient nitrogen source, A. niger grew very poorly on GP. Constitutive expression of GBase favoured fungal growth on GP, indicating that GP catabolism is limited by intracellular GBase levels in A. niger. The absence of a specific GPase and the inability of GP to induce GBase expression confine the fungal growth on GP. That GP is a poor substrate for GBase and a very poor nitrogen source for A. niger offers an opportunity to select GBase specificity mutations. Further, it is now possible to compare two distinct ureohydrolases, namely arginase and GBase, from the same organism.


Assuntos
Aspergillus niger/enzimologia , Butiratos/metabolismo , Proteínas Fúngicas/metabolismo , Guanidinas/metabolismo , Ureo-Hidrolases/metabolismo , Agmatina/metabolismo , Arginase/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Cátions/química , Meios de Cultura/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Cinética , Peso Molecular , Mutação , Propionatos/metabolismo , Multimerização Proteica , Especificidade por Substrato , Ureo-Hidrolases/antagonistas & inibidores , Ureo-Hidrolases/química , Ureo-Hidrolases/genética
9.
Talanta ; 195: 62-68, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625593

RESUMO

A new disposable microfluidic electrochemical paper-based device (ePAD) consisting of two spot sensors in the same working electrode for the simultaneous determination of uric acid and creatinine was developed. The spot 1 surface was modified with graphene quantum dots for direct uric acid oxidation and spot 2 surface modified with graphene quantum dots, creatininase and a ruthenium electrochemical mediator for creatinine oxidation. The ePAD was employed to construct an electrochemical sensor (based on square wave voltammetry analysis) for the simultaneous determination of uric acid and creatinine in the 0.010-3.0 µmol L-1 range. The device showed excellent analytical performance with a very low simultaneous detection limit of 8.4 nmol L-1 to uric acid and 3.7 nmol L-1 to creatinine and high selectivity. The ePAD was applied to the rapid and successful determination of those clinical biomarkers in human urine samples.


Assuntos
Creatinina/urina , Técnicas Eletroquímicas/instrumentação , Dispositivos Lab-On-A-Chip , Ácido Úrico/urina , Biomarcadores/química , Biomarcadores/urina , Creatinina/química , Eletrodos , Grafite/química , Humanos , Oxirredução , Papel , Pontos Quânticos/química , Rutênio/química , Ureo-Hidrolases/química , Ácido Úrico/química
10.
Methods Mol Biol ; 1694: 163-172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29080167

RESUMO

The enzyme 4-guanidinobutyrase (GBase) catalyzes the hydrolysis of 4-guanidinobutyric acid (GB) to 4-aminobutyric acid (GABA) and urea. Here we describe methods to estimate urea and GABA that were suitably adapted from the published literature. The urea is determined by colorimetric assay using modified Archibald's method. However, the low sensitivity of this method often renders it impractical to perform fine kinetic analysis. To overcome this limitation, a high sensitive method for detecting GABA is exploited that can even detect 1 µM of GABA in the assay mixture. The samples are deproteinized by perchloric acid (PCA) and potassium hydroxide treatment prior to HPLC analysis of GABA. The method involves a pre-column derivatization with o-phthalaldehyde (OPA) in combination with the thiol 3-mercaptopropionic acid (MPA). The fluorescent GABA derivative is then detected after reversed phase high performance liquid chromatography (RP-HPLC) using isocratic elution. The protocols described here are broadly applicable to other biological samples involving urea and GABA as metabolites.


Assuntos
Agmatina/metabolismo , Aspergillus niger/metabolismo , Agmatina/química , Bioensaio , Cromatografia Líquida de Alta Pressão , Ureia/química , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo , o-Ftalaldeído/química , o-Ftalaldeído/metabolismo
11.
Anal Biochem ; 537: 41-49, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28870830

RESUMO

An improved amperometric biosensor for detection of creatinine was developed based on immobilization of nanoparticles (NPs) of creatininase (CA), creatinase (CI), and sarcosine oxidase (SOx) onto glassy carbon (GC) electrode. Transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR) were employed for characterization of enzyme nanoparticles (ENPs). The GC electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) at different stages of its amendment. The biosensor showed optimum response within 2s at pH 6.0 in 0.1 M sodium phosphate buffer and 25 °C, when operated at 1.0 V against Ag/AgCl. Biosensor exhibited wider linear range from 0.01 µM to 12 µM with a limit of detection (LOD) of 0.01 µM. The analytical recoveries of added creatinine in sera were 97.97 ± 0.1% for 0.1 mM and 98.76 ± 0.2% for 0.15 mM, within and between batch coefficients of variation (CV) were 2.06% and 3.09% respectively. A good correlation (R2 = 0.99) was observed between sera creatinine values obtained by standard enzymic colorimetric method and the present biosensor. This biosensor measured creatinine level in sera of apparently healthy subjects and persons suffering from renal and muscular dysfunction. The ENPs electrode lost 10% of its initial activity within 240 days of its regular uses, when stored at 4 °C.


Assuntos
Amidoidrolases/metabolismo , Técnicas Biossensoriais/instrumentação , Creatinina/sangue , Técnicas Eletroquímicas/instrumentação , Nanopartículas Metálicas/química , Sarcosina Oxidase/metabolismo , Ureo-Hidrolases/metabolismo , Amidoidrolases/química , Ácido Ascórbico/química , Espectroscopia Dielétrica , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Ouro/química , Humanos , Limite de Detecção , Microscopia Eletrônica de Varredura , Sarcosina Oxidase/química , Ureo-Hidrolases/química , Ácido Úrico/química
12.
J Inorg Biochem ; 166: 122-125, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27846445

RESUMO

Agmatine (1-amino-4-guanidinobutane) plays an important role in a range of metabolic functions, in particular in the brain. Agmatinases (AGMs) are enzymes capable of converting agmatine to the polyamine putrescine and urea. AGMs belong to the family of Mn2+-dependent ureahydrolases. However, no AGM from a mammalian source has yet been extracted in catalytically active form. While in human AGM the six amino acid ligands that coordinate the two Mn2+ ions in the active site are conserved, four mutations are observed in the murine enzyme. Here, we demonstrate that similar to its human counterpart murine AGM does not appear to have in vitro catalytic activity, independent of the presence of Mn2+. However, in presence of agmatine both enzymes are very efficient in promoting cell growth of a yeast strain that is deficient in polyamine biosynthesis (Saccharomyces cerevisiae strain TRY104Δspe1). Furthermore, mutations among the putative Mn2+ binding residues had no effect on the ability of murine AGM to promote growth of the yeast culture. It thus appears that mammalian AGMs form a distinct group within the family of ureahydrolases that (i) either fold in a manner distinct from other members in this family, or (ii) require accessory proteins to bind Mn2+ in a mechanism related to that observed for the Ni2+-dependent urease.


Assuntos
Agmatina/metabolismo , Manganês/metabolismo , Ureo-Hidrolases/metabolismo , Agmatina/química , Animais , Sítios de Ligação , Manganês/química , Camundongos , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ureo-Hidrolases/química , Ureo-Hidrolases/genética
13.
Genet Mol Res ; 14(4): 16332-42, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26662428

RESUMO

The allantoicase (allC) gene of Dictyostelium discoideum allC RNAi mutant strain was silenced using the RNA interference technique. The mutant strain is motile, aggregated, and could not undergo further morphological development. The growth rate is high and the cells show a shortened cell cycle comparing with wild-type D. discoideum. However, the mechanisms regarding these actions remain unclear. mRNA differential display was used in this study to identify genetic differences. A novel D. discoideum gene (GenBank accession number: KC759140) encoding a new zinc protease was cloned. The amino acid sequence of the novel gene exhibited a conserved zinc-binding domain (HEX2HX18E) that allowed its classification into the M1 family of metallopeptidases. The gene encoded a 345-amino acid protein with a theoretical molecular mass of 39.69 kDa and a theoretical pI of 6.05. This protein showed strong homology with leukotriene A4 (LTA4) hydrolase of Homo sapiens (41% identity and 60% similarity at the amino acid level). By analyzing quantitative reverse transcription-polymerase chain reaction data, this zinc protease gene was more highly expressed in D. discoideum allC RNAi mutant type than in wild-type KAx-3 cells during the trophophase. The novel zinc protease gene may function as an LTA4 hydrolase and contribute to the shortening of the allC RNAi mutant cell cycle.


Assuntos
Dictyostelium/genética , Epóxido Hidrolases/química , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Conformação Proteica , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Dictyostelium/classificação , Dictyostelium/metabolismo , Epóxido Hidrolases/genética , Humanos , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Ureo-Hidrolases/química , Ureo-Hidrolases/genética , Ureo-Hidrolases/metabolismo , Zinco/metabolismo
14.
Talanta ; 144: 915-21, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26452908

RESUMO

Creatinine is one of many markers used to investigate kidney function. This paper describes a low-cost enzymatic paper-based analytical device (enz-PAD) for determining urine creatinine. The disposable dead volumes of creatinine enzyme reagents from an automatic analyser cassette were utilised. Whatman No. 3 paper was cut into long rectangular shapes (4×40 mm(2)) on which the enzyme reagents, R1 and R2, were adsorbed in two consecutive regions. The assay was performed by immersing test strips into urine samples contained in microwells to allow creatinine in the sample to react with immobilised active ingredients and, then, traverse via capillary action to the detection area where chromogen products accumulated. The method is based on hydrogen peroxide (H2O2) formation via creatinine conversion using creatininase, creatinase, and sarcosine oxidase. The liberated H2O2 reacts with 4-aminophenazone and 2,4,6-triiodo-3-hydroxybenzoic acid to form quinoneimine with a pink-red colour at the detection zone. The linear range of the creatinine assay was 2.5-25 mg dL(-1) (r(2)=0.983), and the detection limit was 2.0 mg dL(-1). The colorimetric enz-PAD for the creatinine assay was highly correlated with a conventional alkaline picrate method when real urine samples were evaluated (r(2)=0.977; n=40). This simple and nearly zero-cost paper-based device provides a novel alternative method for screening urinary creatinine and will be highly beneficial for developing countries.


Assuntos
Creatinina/urina , Ensaios Enzimáticos/métodos , Papel , Ascorbato Oxidase/química , Catalase/química , Colorimetria/métodos , Custos e Análise de Custo , Creatinina/química , Ensaios Enzimáticos/economia , Humanos , Peroxidase/química , Sarcosina Oxidase/química , Ureo-Hidrolases/química
15.
Bioengineered ; 6(4): 248-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083084

RESUMO

Creatinase (creatine amidinohydrolase), an important medical enzyme, has been used for clinical diagnosis of renal function because of its high substrate specificity. Recently, we successfully cloned a NaN3-resistant creatinase encoding gene from Arthrobacter nicotianae. By optimizing the cultivation process, we realized its high-level expression in Escherichia coli. In this addendum, production of this NaN3-resistant creatinase in E. coli and future research were further discussed.


Assuntos
Arthrobacter/química , Proteínas de Bactérias/química , Creatinina/análise , Farmacorresistência Bacteriana , Escherichia coli/enzimologia , Ureo-Hidrolases/química , Arthrobacter/enzimologia , Arthrobacter/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Creatinina/química , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Expressão Gênica , Humanos , Testes de Função Renal , Pseudomonas putida/química , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Azida Sódica/toxicidade , Especificidade por Substrato , Ureo-Hidrolases/genética
16.
J Inorg Biochem ; 145: 65-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25635913

RESUMO

Agmatinase is an enzyme that catalyzes the hydrolysis of agmatine, a compound that is associated with numerous functions in the brain of mammalian organisms such as neurotransmitter, anticonvulsant, antinociceptive, anxiolytic and antidepressant-like actions. To date the only characterized agmatinases with significant enzymatic activity were extracted from bacterial organisms. These agmatinases are closely related to another ureahydrolase, arginase; both have binuclear Mn(2+) centers in their active sites. An agmatinase-like protein (ALP) from rat brain was identified that bears no sequence homology to known agmatinases (E. Uribe, M. Salas, S. Enriquez, M.S. Orellana, N. Carvajal, Arch. Biochem. Biophys. 461(2007) 146-150). Since all known ureahydrolases contain histidines in their binuclear Mn(2+) site each of the five histidine residues in ALP was individually replaced by alanines to identify those that may be involved in metal ion binding. Reactivation assays and thermal stability measurements indicated that His206 is likely to interact with a Mn(2+) bound to a high affinity site. In contrast, His65 and possibly His435 are important for binding of a second Mn(2+) to a lower affinity site. Metal ion binding to that site is not only leading to an increase in reactivity but also enzyme stability. Thus, similar to bacterial agmatinases and some of the antibiotic-degrading, Zn(2+)-dependent metallo-ß-lactamases ALP appears to be active in the mono and binuclear form, with binding of the second metal ion increasing both reactivity and stability.


Assuntos
Manganês/química , Ureo-Hidrolases/química , Cátions Bivalentes , Ligação Proteica
17.
Appl Biochem Biotechnol ; 175(5): 2564-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25536878

RESUMO

In the present study, the gene encoding creatinase was amplified from Arthrobacter nicotianae 23710 (CICC) and functionally overexpressed in Escherichia coli. By applying a two-stage temperature control strategy, the production of creatinase was increased up to 61.3 U/mL in 3-L fermentor with a high productivity of 6.1 U/mL/h. The recombinant creatinase shows excellent resistance to the chelating agent EDTA, the surfactants (Tween 20, Tween 80, and Triton X-100) and the common preservative NaN3 (20 mM). High-level expression of the recombinant creatinase will contribute to its application in clinical diagnosis of renal function.


Assuntos
Arthrobacter/enzimologia , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Ureo-Hidrolases/genética , Arthrobacter/química , Arthrobacter/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/metabolismo , Expressão Gênica , Temperatura , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-25458355

RESUMO

At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved in catalysis), the presence of two (or more) closely spaced metal ions gives an additional advantage in terms of (i) charge delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) decreased transition-state energies. Among this group of proteins, enzymes that catalyze the hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. These enzymes are involved in a multitude of biological functions, and an increasing number of them gain attention for translational research in medicine and biotechnology. Their functional versatility and catalytic proficiency are largely due to the presence of metal ions in their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of several closely related enzymes with a view to highlighting the functional diversity bestowed upon them by their metal ion cofactors.


Assuntos
Aminopeptidases/química , Proteínas de Bactérias/química , Metais Pesados/química , Diester Fosfórico Hidrolases/química , Ureo-Hidrolases/química , beta-Lactamases/química , Biocatálise , Cátions Bivalentes , Humanos , Hidrólise , Modelos Moleculares , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
19.
J Mol Biol ; 426(17): 3028-40, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25020232

RESUMO

In plants, the ureide pathway is a metabolic route that converts the ring nitrogen atoms of purine into ammonia via sequential enzymatic reactions, playing an important role in nitrogen recovery. In the final step of the pathway, (S)-ureidoglycolate amidohydrolase (UAH) catalyzes the conversion of (S)-ureidoglycolate into glyoxylate and releases two molecules of ammonia as by-products. UAH is homologous in structure and sequence with allantoate amidohydrolase (AAH), an upstream enzyme in the pathway with a similar function as that of an amidase but with a different substrate. Both enzymes exhibit strict substrate specificity and catalyze reactions in a concerted manner, resulting in purine degradation. Here, we report three crystal structures of Arabidopsis thaliana UAH (bound with substrate, reaction intermediate, and product) and a structure of Escherichia coli AAH complexed with allantoate. Structural analyses of UAH revealed a distinct binding mode for each ligand in a bimetal reaction center with the active site in a closed conformation. The ligand directly participates in the coordination shell of two metal ions and is stabilized by the surrounding residues. In contrast, AAH, which exhibits a substrate-binding site similar to that of UAH, requires a larger active site due to the additional ureido group in allantoate. Structural analyses and mutagenesis revealed that both enzymes undergo an open-to-closed conformational transition in response to ligand binding and that the active-site size and the interaction environment in UAH and AAH are determinants of the substrate specificities of these two structurally homologous enzymes.


Assuntos
Amidina-Liases/química , Arabidopsis/enzimologia , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Ureo-Hidrolases/química , Domínio Catalítico , Complexos de Coordenação/química , Cristalografia por Raios X , Glioxilatos/química , Hidrólise , Cinética , Modelos Moleculares , Ligação Proteica , Homologia Estrutural de Proteína , Especificidade por Substrato , Ureia/análogos & derivados , Ureia/química
20.
Biochemistry ; 53(4): 735-45, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24417435

RESUMO

A major problem of genome annotation is the assignment of a function to a large number of genes of known sequences through comparison with a relatively small number of experimentally characterized genes. Because functional divergence is a widespread phenomenon in gene evolution, the transfer of a function to homologous genes is not a trivial exercise. Here, we show that a family of homologous genes which are found in purine catabolism clusters and have hypothetically equivalent functions can be divided into two distinct groups based on the genomic distribution of functionally related genes. One group (UGLYAH) encodes proteins that are able to release ammonia from (S)-ureidoglycine, the enzymatic product of allantoate amidohydrolase (AAH), but are unable to degrade allantoate. The presence of a gene encoding UGLYAH implies the presence of AAH in the same genome. The other group (UGLYAH2) encodes proteins that are able to release ammonia from (S)-ureidoglycine as well as urea from allantoate. The presence of a gene encoding UGLYAH2 implies the absence of AAH in the same genome. Because (S)-ureidoglycine is an unstable compound that is only formed by the AAH reaction, the in vivo function of this group of enzymes must be the release of urea from allantoate (allantoicase activity), while ammonia release from (S)-ureidoglycine is an accessory activity that evolved as a specialized function in a group of genes in which the coexistence with AAH was established. Insights on the active site modifications leading to a change in the enzyme activity were provided by comparison of three-dimensional structures of proteins belonging to the two different groups and by site-directed mutagenesis. Our results indicate that when the neighborhood of uncharacterized genes suggests a role in the same process or pathway of a characterized homologue, a detailed analysis of the gene context is required for the transfer of functional annotations.


Assuntos
Aminoidrolases/química , Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Glicina/análogos & derivados , Purinas/química , Ureia/análogos & derivados , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Aminoidrolases/genética , Amônia/química , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Glicina/química , Cinética , Redes e Vias Metabólicas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Filogenia , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Ureia/química , Ureo-Hidrolases/química , Ureo-Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...